The Department of Neuroscience
The Department of Neuroscience

The Department of Neuroscience

The Department of Neuroscience

The neuroscience department works primarily on the neurobiological foundations of speech perception, language processing, auditory cognition, and music, including the dimensions of aesthetic experience. The main methods employed include electrophysiological recordings using magnetoencephalography (MEG), electroencephalography (EEG), and electrocorticography (ECoG), as well as imaging studies using structural and functional magnetic resonance imaging (MRI). Our neuroscience-focused studies typically include a wide range of behavioral and psychophysical approaches, as well. In general, the approach is one of “methodological pluralism” – that is to say, we use the methodology is most suited to address a given question. The research questions are motivated by issues arising from neurobiology, psychology, and theoretical, computational, and psycholinguistics.  more...

NEWS + EVENTS

In the first Fechner Lecture at the Max Planck Institute for Empirical Aesthetics, Anjan Chatterjee focused on “The Good, the Bad and The Ugly of Beauty”. Professor Chatterjee (University of Pennsylvania) is among the leading international scientists in the field of neuroaesthetics. Professor David Poeppel, Managing Director of the institute, welcomed more than 100 listeners in the ArtLab Foyer.

YOUTUBE

Auditory neuroscience has provided strong evidence that neural oscillations synchronize to the rhythms of speech. Higher up in the hierarchy, cycles of cortical excitation and inhibition would also reflect syntactic parsing and the processing of sentence-level semantics. This international symposium joined leading researchers from the speech and language fields with eminent systems neuroscientists from the field of neural oscillations. For more Information please visit ae.mpg.de/NO17

Our Research Areas

What neuronal and cognitive representations and computations form the basis for the transformation from “vibrations in the ear” (sounds) to “abstractions in the head” (words)? Successful communication using spoken language requires a speech processing system that can negotiate between the demands of auditory perception and motor outputs, on the one hand, and the representational and computational requirements of the language system, on the other.

more

The perception of dynamically changing signals, the very basis of listening to language or music, or seeing naturalistic visual scenes, requires an analysis of the temporal information that forms (part of) the basis of such signals. What are the temporal primitives that underlie their perceptual analysis? How is incoming information temporally “sampled”? What type of temporal information is necessary to experience, say, rhythm, or syllable duration, or temporal intervals, or change in a sequence?

more

This research area takes a neurobiological view of "the aesthetic granularity problem.” What are the "atoms of aesthetic experience," as viewed from human neuroscience? Experiencing a single musical note or one word is arguably too small a unit of analysis; experiencing an entire symphony or whole novel is arguably too big. What constitutes an "aesthetic primitive," from a brain’s-eye-view?

more

Neuronal oscillations are believed to play a role in various perceptual and cognitive tasks, including attention, navigation, memory, motor planning, and - most relevant in the context of the present work - spoken-language comprehension. The specific computational functions of neuronal oscillations are uncertain. We aim to elucidate how these ubiquitous neurophysiological attributes may underpin speech, language, and music processing.

more

Many recent theories of perception and cognition suggest that the brain uses internal models of the world to predict forthcoming events. There exists compelling evidence from a wide range of studies that prediction occurs during language comprehension and listening to music, as well. A successful system of this type needs to predict the content of future events (‘what’) but also event timing (‘when’).

more

Director

Photo of David  Poeppel PhD

Prof. David Poeppel PhD

Neurosciences

Director

+49 69 8300479-301

E-Mail

Website

Assistants

Photo of Anja  Tydecks

Anja Tydecks

Neurosciences

Assistant

+49 69 8300479-302

E-Mail

Photo of Cordula  Ullah

Cordula Ullah

Neurosciences

Assistant

+49 69 8300479-301

E-Mail

New Publications

Teng, Tian, Doelling & Poeppel, Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrate an active chunking process, European Journal of Neuroscience

Belfi, A.M., Vessel, E.A., Starr, G.G. Individual Ratings of Vividness Predict Aesthetic Appeal in Poetry. Psychology of Aesthetics, Creativity, and the Arts. Advance online publication